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PURPOSE. Human limbal palisade of Vogt is an ideal model for studying and practicing
regenerative medicine due to their accessibility. Nonresolving inflammation is a common
manifestation of limbal stem cell deficiency, which is the major cause of corneal blindness,
and presents as a threat to the success of transplanted limbal epithelial stem cells. Clinical
studies have shown that the efficacy of transplantation of limbal epithelial stem cells can be
augmented by transplantation of cryopreserved human amniotic membrane (AM), which
exerts anti-inflammatory, antiscarring, and antiangiogenic action to promote wound healing.

METHODS. Review of published data to determine the molecular action mechanism explaining
how AM exerts the aforementioned therapeutic actions.

RESULTS. From the water-soluble extract of cryopreserved AM, we have biochemically purified
one novel matrix component termed heavy chain (HC)-hyaluronan (HA)/pentraxin 3 (PTX3)
as the key relevant tissue characteristic responsible for the aforementioned AM’s efficacy.
Heavy chain–HA is a complex formed by a covalent linkage between HA and HC1 of inter-a-
trypsin inhibitor (IaI) by tumor necrosis factor-stimulated gene-6 (TSG-6). This complex may
then be tightly associated with PTX3 to form HC-HA/PTX3 complex. Besides exerting an anti-
inflammatory, antiscarring, and antiangiogenic effects, HC-HA/PTX3 complex also uniquely
maintains limbal niche cells to support the quiescence of limbal epithelial stem cells.

CONCLUSIONS. We envision that HC-HA/PTX3 purified from AM can be used as a unique
substrate to refine ex vivo expansion of limbal epithelial stem cells by maintaining stem cell
quiescence, self-renewal and fate decision. Furthermore, it can also be deployed as a platform
to launch new therapeutics in regenerative medicine by mitigating nonresolving inflammation
and reinforcing the well-being of stem cell niche.

Keywords: anti-inflammation, antiangiogenesis, antiscarring, amniotic membrane, heavy
chain, hyaluronan, inter-a-inhibitor, limbus, stem cells, stem cell niche, umbilical cord

Stem cells (SCs) with extensive proliferative potential of
giving rise to one or more differentiated cell types are

common in early mammalian embryos. By adulthood, such
SCs are dispersed and kept in a unique anatomic location
(niche) of each self-renewing tissue where they continue to
maintain quiescence, while performing remarkable and
relentless self-renewal to replenish the SC population lost to
progeny production and ensuring proper fate decision.
Cumulative evidence reveals that nonresolving inflammation
is a common threat of a number of degenerative diseases. It
remains elusive how chronic inflammation might pose as a
threat to the well-being of SCs. Although SCs hold consider-
able promise for the treatment of a number of diseases, it is
not clear whether SCs can still perform the expected task
when transplanted to the tissue that manifests nonresolving
inflammation. Inasmuch as we wish to deploy the potential of
SC-based therapies in regenerative medicine, we still face the
challenge of achieving sufficient numbers of adult tissue-
specific SCs via ex vivo expansion while maintaining the
stemness. This major obstacle is due to our lack of better
understanding of how quiescence, self-renewal, and fate

decision of adult somatic SCs are controlled in the in vivo
native niche let alone in an in vitro environment. This review
appraises the knowledge and experience gathered from the
studies of corneal epithelial stem cells at the limbus in the last
three decades. By focusing on the close relationship between
‘‘inflammation’’ and ‘‘regeneration,’’ we summarize our
research effort in identifying the tissue characteristics
relevant to human amniotic membrane (AM) explaining
how cryopreserved AM controls inflammation and promotes
wound healing. In the end, we also lay down key needs and
opportunities that may guide others in identifying better
therapeutic strategies in treating corneal blindness caused by
limbal SC deficiency in the future.

UNIQUE LIMBAL MODEL OF CORNEAL EPITHELIAL STEM

CELLS AND THEIR NICHES

Among all adult epithelial tissues, the model of the corneal
epithelium is most unique in having its SCs located at the basal
epithelial layer of the limbus (between the cornea and the
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conjunctiva) in a special anatomic structure termed ‘‘palisades
of Vogt,’’ while its transient amplifying cells (TACs; i.e., the
immediate progeny of SC) are located in both limbal and
corneal basal epithelia.1,2 This location is more accessible than
other epithelial tissues, rendering the cornea the prime
location for studying the aforementioned questions and for
practicing regenerative medicine.

CORNEAL DISEASES WITH LIMBAL STEM CELL

DEFICIENCY

Full regeneration of the entire corneal epithelium is
expected when limbal SCs are intact and healthy. Neverthe-
less, conjunctival epithelial cells migrate onto the corneal
surface when limbal SCs are partially3 or totally4,5 damaged,
leading to a pathologic state termed limbal SC deficiency
(LSCD). Limbal SC deficiency carries the hallmark of
conjunctivalization (i.e., the corneal surface is covered by
an ingrowing conjunctival epithelium containing goblet cells
as first illustrated by impression cytology).6 The process of
conjunctivalization is invariably associated with destruction
of the basement membrane, emergence of superficial
vascularization, and chronic inflammation and scar-
ring.3,5,7–9 Patients inflicted with LSCD suffer from a severe
loss of vision and annoying irritation, and are poor
candidates for conventional corneal transplantation. It
remains unclear how chronic inflammation perpetuates, if
not triggers, LSCD.

CORNEAL SURFACE RECONSTRUCTION BY LIMBAL STEM

CELL TRANSPLANTATION

As conventional corneal transplantation cannot satisfactorily
reconstruct corneal surfaces with extensive LSCD, new
surgical strategies have been devised by transplanting limbal
SCs from an autologous (autograft) or allogeneic source
(allograft; for reviews of different surgical procedures see
Refs. 10–12). When total LSCD involves only one eye
(unilateral), the damaged corneal surface can be effectively
reconstructed by conjunctival limbal autograft.13 To reduce
the potential risk to the patient’s donor eye, the first option
is to perform limbal SC allograft, where an allogeneic (not
patient’s own) source of limbal SC are derived from either
HLA-matched living donors14–16 or nonmatched cadav-
ers.15,17–19 The second option is to perform oral mucosal
graft as a limbal surrogate20 or ex vivo expansion of limbal
epithelial stem cells,21 especially for eyes where transplan-
tation of allogeneic limbal SCs has failed or is not
feasible.22,23 The third option is to perform amniotic
membrane transplantation (AMT) as an adjunctive therapy
to promote the success of transplanting autologous24 and
allogeneic25 limbal SCs for treating total limbal deficiency. In
the former case, AMT has allowed the donor site in the
fellow eye to be reduced to 608 limbal arc length.24

Recently, Sangwan et al.26 and others27 have devised
‘‘simple limbal epithelial transplantation (SLET)’’ as an
alternative to conjunctival limbal autograft and ex vivo
expansion of limbal epithelial SCs. Simple limbal epithelial
transplantation subdivides the limbal biopsy into tissue
fragments as a source of regeneration when placed on the
limbal deficient cornea that is covered by AM as a graft
without26 or with27 another AM as a bandage. Although the
exact action mechanism remains unknown, clinical success
indicates that AM helps expand residual or transplanted
limbal SCs in vivo.

WHAT IS AMNIOTIC MEMBRANE?

Anatomically, the AM is the innermost membrane enwrapping
the fetus in the amniotic cavity and extends from the fetal
membrane (i.e., encompassing both the AM and the chorion)
to the placental proper and the umbilical cord (UC), of which
the latter connects the placenta and the fetus. Histologically,
the AM consists of a simple epithelium, a basement membrane,
and an avascular stroma. The stromal layer of the AM can be
further subdivided into compact, fibroblast, and spongy
layers.28 The AM in the UC has a thicker stroma, which is
also avascular and primarily composed of a viscous, glycos-
aminoglycan rich Wharton’s Jelly. Physiologically, the integrity
of the AM dictates the well-being of the fetus during
development. Developmentally, the fertilized egg first forms
the blastocyte, which then develops into the inner and outer
cell mass, of which the latter further differentiates into the
trophoectoderm. Subsequently, the inner cell mass develops
into the fetus, the AM and the UC, while the trophoectoderm
turns into the chorion and the decidua. Hence, both the AM
and the UC share the same cellular origin as the fetus. The AM’s
barrier function is not only ‘‘physical’’ but also ‘‘biological.’’
During pregnancy, the maternal immune system is challenged
by the presence of the fetus, which must be tolerated despite
being semiallogeneic. Although one such ‘‘biological’’ barrier
function resides at the decidua level where decidual macro-
phages contribute to fetal tolerance and are involved in several
other processes required for a successful pregnancy, it remains
unclear whether AM also plays a key role in supporting the
homeostatic and tolerant immune milieu required for a
successful pregnancy.

DIFFERENCES IN ADULT AND FETAL WOUND HEALING

Adult wound healing is heralded by inflammation, which can
be subdivided into two major phases that involve cellular
infiltration by polymorphonuclear neutrophils (PMNs), macro-
phages, and lymphocytes derived from innate and adaptive
immune responses, respectively (Fig. 1). Polymorphonuclear
neutrophils, first arriving at the scene, will eventually undergo
apoptosis due to their short life span. These apoptotic
neutrophils are removed by M2 macrophages via phagocytosis,
resulting in the restoration and maintenance of anti-inflamma-
tory and immune-tolerogenic milieu.29 On the contrary, under
pathological states when there is a wider extent of injury/
wound and PMN infiltration, which together with a prolonged
lifespan result in additional collateral damage. This may then
lead to a significant delay of PMN apoptosis or emergence of
PMN necrosis, which exacerbates inflammation and activates
M1 macrophages that are ineffective in phagocytic clearance of
apoptotic neutrophils.30,31 Collectively, these pathological
states lead to prolonged inflammation that is the hallmark of
a number of diseases.32–35 M1 macrophages are also professed
to activate Th1 and Th17 lymphocytes that play a key role in
allogeneic rejection and autoimmune dysregulation, respec-
tively.36 (Fig. 1) A lack of transition from M1 to M2
macrophages is a hallmark of nonhealing skin wounds.30,37 A
significant increase of epidermal Langerhans cells (i.e., a
special type of macrophages),38 the presence of activated T
lymphocytes (CD3þ, HLA DR’, CD250),39 and a high amount of
TGF-b1 during the proliferative phase of wound healing40 are
characteristic of hypertrophic scars.

As a contrast, the fetal wound healing is characteristically
known as ‘‘scarless.’’41,42 It has been known that following
injury to the embryo, the inflammatory response (by virtue of a
less than mature immune system) is less marked and differs in
terms of the types and number of inflammatory cells that enter
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the wound43 and diminished IL-6 and IL-8 production.44,45

Besides downregulation of proinflammatory responses, there is
downregulation of proscarring response in fetal wound
healing.46,47

SEARCH FOR RELEVANT TISSUE CHARACTERISTICS IN

AMNIOTIC MEMBRANE

We thus speculate that AM contributes to the fetal immune-
tolerance state and the scarless fetal wound healing during
pregnancy by delivering anti-inflammatory and antiscarring
action, and to modulate alloreactive immune activation. As a
first step to strengthen this hypothesis, it is important to
identify the molecule(s) that is responsible for AM’s anti-
inflammatory action, which has been demonstrated in a
number of studies where transplanted cryopreserved AM
induces apoptosis of neutrophils,48,49 monocytes, and macro-
phages50; reduces infiltration of neutrophils,48,49 macrophag-
es,51,52 and lymphocytes53; and promotes polarization of M2
macrophages.54 We first showed that the aforementioned anti-
inflammatory action exerted by cryopreserved AM is retained
in the water-soluble AM extract (AME) prepared from
cryopreserved AM Specifically, we have shown that human
AME can induce apoptosis of IFN-c, lipopolysaccharide (LPS),
and IFN-c/LPS-activated but not resting macrophages.55,56 AME
also downregulates expression of M1 macrophage markers
such as TNF-a, IL-6, CD86, and MHC II while upregulating M2
macrophage markers such as cytokine IL-10.56

Following the work of identifying the heavy chain (HC)-
hyaluronan (HA)/pentraxin 3 (PTX3) complex as the key
component in the cumulus-oocyte complex surrounding the
ovulated oocyte to ensure fertilization,57,58 our laboratory was
the first reporting that the biosynthetic pathway used for
ovulation also takes place in the AM. In short, we have purified
the HC-HA/PTX3 complex from AME by two successive runs of

ultracentrifugation in a CsCl gradient in the presence of 4M
guanidine HCl.59,60 The biosynthetic process of HC-HA/PTX3
involves the following two steps (Fig. 2): the first is to from HC-
HA complex via tumor necrosis factor-stimulated gene-6 (TSG-
6), which is an enzyme that catalyzes the covalent (ester bond)
transfer of HCs from inter-a-trypsin inhibitor (IaI) to HA.61–64

IaI contains two HCs (i.e., HC1 and HC2) and a light chain
termed bikunin jointed a chondroitin sulfate chain and is
present in the blood after being secreted by the liver.65–70 We
have demonstrated that the HC-HA/PTX3 complex purified
from AM consists of HMW HA (>3000 kDa) covalently linked
with HC1 and tightly bound PTX3, but not HC2, bikunin, and
TSG-6. Unlike the cumulus-oocyte complex, the source of IaI is
endogenously produced by AM epithelial cells and stromal
cells but not derived from the liver, and the expression of TSG-
6 and PTX3 is constitutive (i.e., without relying on proin-
flammatory cytokines).60,71 Similar to ovulation,58,72 the
second step is to from the HC-HA/PTX complex by tight
association of the HC-HA complex with PTX3.

ANTI-INFLAMMATORY EFFECT OF HC-HA/PTX3

As stated above, PMNs are among the first recruited to engulf
pathogens and damaged tissues before their eventual apopto-
sis. Delayed neutrophil apoptosis will lead to chronic
inflammation, which is the hallmark of many diseases.34,35

We have reported that water-soluble HC-HA/PTX3, but not HA,
significantly promotes apoptosis of freshly-isolated neutrophils
after activated by fMLP or LPS but sparing resting neutro-
phils.73 Similarly, water-soluble HC-HA/PTX3, but not HA, does-
dependently promotes apoptosis of LPS-activated, IFN-c–
activated, or IFN-c/LPS-activated, but not resting macrophag-
es.56,59,73 Clearance of apoptotic neutrophils by M2 macro-
phages is essential to resolve inflammation.74–76 We noted that
both water-soluble and substrate (plastic)-immobilized HC-HA/
PTX3, but not HA, promotes phagocytosis of apoptotic

FIGURE 1. Nonresolving inflammation is correlated to progression from innate to adaptive immune responses. Under normal circumstances,
infiltrating PMNs leads to apoptosis and apoptotic PMNs are cleared by M2 macrophages. Under pathological states, prolonged PMN infiltration
delays their apoptosis. This leads to and together with delayed phagocytic clearance of apoptotic PMNs by M1 macrophages activates Th1 or Th17
lymphocytes of the adaptive immune response leading to nonhealing chronic wounds or ulcers. HC-HA/PTX3 purified from AM facilitates PMN
apoptosis, polarizes M2 macrophages, and suppresses lymphocyte activation.
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neutrophils by resting and LPS-activated macrophages, respec-
tively. Therefore, HC-HA/PTX3 suppresses proinflammatory
responses of neutrophils and macrophages involved in innate
immune responses (Fig. 1).

Macrophages, besides undergoing classical M1 activation
(e.g., by IFN-c and/or LPS) to express high levels of
proinflammatory cytokines (e.g., IL-12, IL-23, and TNF-a) and
activate Th1 and Th17 lymphocytes,36 can also be polarized
toward M2 activation (e.g., by IL-4/IL-13 or immune complex),
which express a low level of IL-12 but a high level of anti-
inflammatory IL-10, to activate Treg lymphocytes.77 Polariza-
tion of M2 macrophages promotes wound healing and resolves
inflammation.78–80 We have recently reported that immobilized
HC-HA/PTX3 promotes polarization of LPS- or IFN-c/LPS-
activated macrophages toward M2 phenotype.73,81 These data
show that HC-HA/PTX3 can further downregulate the innate
immune responses and extends its reach against adaptive
immune responses by polarizing M2 macrophages (Fig. 1).

Because HC-HA/PTX3 polarizes M2 macrophages,73 and
because macrophages are at the cross-road bridging innate
immune responses and adaptive immune responses, we
speculate that the anti-inflammatory effect of HC-HA/PTX3 in
innate immune responses may also be extended to modulate
adaptive immune responses. CD4þT cells become activated by
contacting with antigen presenting cells presenting the
peptide antigen through MHC II to proliferate rapidly and
differentiate into Th1, Th2, Th17, or Treg.82–85 Th1 cells
secrete IFN-c and IL-2 to enhance proinflammatory respons-

es.86,87 These responses can be downregulated by Tregs,
which is activated by M2 macrophages.77 To test the
aforementioned hypothesis, we have reported that water-
soluble HC-HA/PTX3, but not HA, suppresses activation of
CD4þ T cells isolated from murine lymph nodes and spleens
via ligation with a-CD3/a-CD28 regarding proliferation and
production of Th1 cytokines (IFN-c, IL-2) and promotes
significant expansion of CD25þ/FOXP3þ T cells.81 These data
indicate that HC-HA/PTX3 also extends its action toward
adaptive immune responses by directly suppressing Th1 cells
while promoting the expansion of Tregs (Fig. 1).

To demonstrate that the aforementioned anti-inflammatory
actions of HC-HA/PTX3 can downregulate both innate and
adaptive immune responses in vivo, we performed corneal
allograft transplantation in mice treated with HC-HA/PTX3 and
assessed the allograft survival. Our results showed that
subconjunctival injection of HC-HA/PTX3 dose-dependently
prolonged the corneal allograft survival.81 Collectively, the
above data shed a new light in how this novel matrix, present
from ovulation58,88 to pregnancy,59,60,71,73 might contribute to
the development of fetal immune tolerance during pregnancy.

ANTISCARRING EFFECT OF HC-HA/PTX3

Although anti-inflammatory effects can indirectly lead to
antiscarring effects, experimental evidence also shows that
the AM stroma has a direct antiscarring effect. Previously, we
have reported that expression of TGF-b1 to 3 and TGF-bR2
transcripts (using Northern blot) is downregulated in human
corneal fibroblasts and human limbal and conjunctival
fibroblasts cultured on the stromal side of cryopreserved AM
(CAM).89,90 This direct antiscarring effect also explains why
AM implanted into the corneal stromal pocket reduces
myofibroblast differentiation elicited by invading epithelial
cells in a rabbit model,91 and why corneal haze is reduced in
excimer laser-induced keratectomy in rabbits.48,49,92,93 We
subsequently reported that water-soluble AME induces cell
aggregation and prevents expression of a-smooth muscle actin
(a-SMA) by myofibroblasts.94 Human95 and mouse96 kerato-
cytes seeded on the stromal side of cryopreserved AM maintain
their normal phenotype without eliciting nuclear translocation
of pSmad2/3 even if they were exposed to serum or TGF-b1.
Water-soluble HC-HA/PTX3, but not HA, suppresses the TGF-
b1 promoter activity of human corneal fibroblasts.59

ANTIANGIOGENIC EFFECT OF HC-HA/PTX3

Besides reduction of inflammation and scarring, AM trans-
planted corneal surfaces also show reduced vascularization.97

This antiangiogenic action has also been exploited during
corneal surface reconstruction in conjunction with transplan-
tation of corneal epithelial stem cells from the limbus.25,98,99

Previously, a soluble AM extract prepared by boiling and
homogenization was shown to prevent angiogenesis in a rat
model of corneal neovascularization induced by alkali burn and
by suppressing viability and tube formation of cultured human
umbilical vein endothelial cells (HUVEC).100 Besides the
aforementioned anti-inflammatory and antiscarring actions,
we have also reported that HC-HA/PTX3 suppresses HUVEC
viability more significantly than HA and AM stromal extract,
and such suppression is not mediated by CD44.101 HC-HA/
PTX3 also causes HUVEC to become small and rounded with a
decrease in spreading and filamentous actin.101 Without
promoting cell detachment or death, HC-HA/PTX3 dose-
dependently inhibited proliferation and was 100-fold more
potent than HA.101 Migration triggered by VEGF and tube
formation were also significantly inhibited by HC-HA/PTX3.101

FIGURE 2. Formation of HC-HA/PTX3. IaI is composed of two heavy
chains (HC1 and HC2) covalently linked to bikunin via a chondroitin
sulfate. HCs from IaI are covalently transferred to HMW HA to form
HC-HA complex via the catalytic action of TSG-6. PTX3 octamers are
tightly associated with the HC-HA complex via binding with HCs.
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HC-HA/PTX3 MAINTAINS LIMBAL NICHE CELL

PHENOTYPE FOR SUPPORTING SC QUIESCENCE

Inasmuch as the limbal niche is easy to access and plays an
important role, the progress in understanding how it regulates
limbal SCs considerably lags behind other SC model systems.
We have embarked on this challenge by discovering a new
method of isolating entire limbal epithelial SCs together with
their niche cells (NCs) from the human limbus based on
digestion with collagenase.102 The isolated niche cells (LNCs)
are closely associated with limbal basal epithelial progenitor
cells (LEPCs), pancytokeratin (PCK) negative but vimentin
positive, as small as 5 lm in diameter, and heterogeneously
express SC markers such as Oct4, Sox2, Nanog, Rex1, Nestin,
N-cadherin, SSEA4, and CD34.102,103 Isolated niche cells can
then be effectively expanded on coated Matrigel in modified
embryonic stem cell medium (MESCM) up to 12 passages with
angiogenesis104 and mesenchymal stem cells105 potentials.
Upon being reseeded in three-dimensional (3D) Matrigel,
expanded LNCs revert back their phenotype with overexpres-
sion of the aforementioned embryonic SC (ESC) markers.
Taking advantage of this advance, we have established an in
vitro model system in 3D Matrigel, in which reunion between a
single LEPC and a single LNC leads to sphere formation
through the SDF-1/CXCR4 chemokine axis.106 A close contact
with LNCs endows LEPCs with better clonal growth on 3T3
fibroblast feeder layers.102 and prevents LEPCs from adopting
the corneal fate decision.103,105 Both bone morphogenic
protein (BMP) and Wnt signaling control stem cells in bulge/
dermal papilla, intestinal crypt, and bone marrow. Our study
showed that balancing acts between Wnt signaling and BMP
signaling exist not only within LEPCs but also between LEPCs
and LNCs to regulate clonal growth of LEPCs. In 3D Matrigel,
the resultant sphere exhibits inhibition of corneal fate decision
and marked clonal growth of LEPCs, of which the latter is
correlated with activation of canonical Wnt signaling.107 Using
immobilized HC-HA/PTX3, we noted that the resultant spheres
exhibited similar suppression of the corneal fate decision but
upregulation of quiescence markers including nuclear translo-
cation of phosphorylated Bmi-1, and negligible clonal growth
of LEPCs.108 This outcome was correlated with the suppres-
sion of canonical Wnt but activation of noncanonical (PCP)
Wnt signaling as well as BMP signaling in both LEPCs and
LNCs. The activation of BMP signaling in LNCs was pivotal
because nuclear translocation of pSmad1/5/8 was prohibited
in hLEPCs when reunioned with mLNCs of conditionally
deleted Bmpr1a;Acvr1 DCKO mice. Furthermore, ablation of
BMP signaling in LEPCs led to upregulation of cell cycle genes,
downregulation of Bmi-1, nuclear exclusion of phosphorylated
Bmi-1, and marked promotion of the clonal growth of LEPCs.
Hence, HC-HA/PTX3 uniquely upregulates BMP signaling in
LNCs, which leads to BMP signaling in LEPCs to achieve
quiescence, helping explain how AMT is clinically useful as a
matrix for both in vivo26,27 and ex vivo109 expansion of limbal
epithelial stem cells and to treat corneal blindness caused by
LSCD.

KEY NEEDS AND OPPORTUNITIES

The aforementioned progresses help us identify the following
key needs and opportunities in practicing regenerative
medicine in the model of limbal epithelial SCs. Firstly, we
should recognize that nonresolving inflammation is a
common threat of diverse causes of LSCD leading to corneal
blindness and against the success of transplanted limbal
epithelial SCs. Hence, it is necessary to understand how
inflammation becomes ‘‘nonresolving’’ and what pathological

processes can threaten the well-being of limbal epithelial
SCs. For the former question, one promising direction is to
focus on the polarization of M1 macrophages to M2
macrophages as a pivotal step to abort progression of
inflammation. For the latter question, we propose to use
the said in vitro reconstituted niche to study how various
‘‘inflammatory’’ insults may alter the function of limbal
epithelial SCs. Such research pursuits can be facilitated by
judging the maintenance of the normal limbal NC phenotype
as a small round shape expressing ‘‘ESC markers’’ and the
close SC-NC contact as pre-requisites in maintaining quies-
cence, self-renewal and corneal fate decision of limbal
epithelial SCs. Secondly, by realizing the causative role of
nonresolving inflammation in LSCD, we should appreciate
the importance of controlling such inflammation in order to
promote the function of limbal epithelial SCs toward
regeneration. One effective strategy that has been success-
fully deployed clinically to control inflammation is transplan-
tation of cryopreserved AM. Our cumulative research has
identified the HC-HA/PTX3 complex as the key relevant
tissue characteristic of the AM to validate its anti-inflamma-
tory and antiscarring clinical efficacies.59,60,73,81,101 Because
all conventional anti-inflammatory agents such as glucocorti-
costeroids, nonsteroid anti-inflammatory agents, cyclospor-
ine/tarcolimus, or various humanized antibodies, target at a
specific action of one particular type of inflammatory/
immune cells, the anti-inflammatory action of the HC-HA/
PTX3 complex stands out as a unique class as it exerts broad
anti-inflammatory actions by targeting at PMNs, macrophag-
es, and lymphocytes extending from innate to adaptive
immune responses. Thirdly, we have learned that the
function of limbal epithelial SCs is dictated by a close
interaction with limbal NCs as disclosed in the said in vitro
limbal niche reconstituted by reunion between limbal
epithelial progenitors and limbal NCs. Hence, such an in
vitro reconstituted limbal niche is an important approach to
study how such intercellular interactions might lead to the
control of quiescence, self-renewal, and fate decision of
limbal epithelial SCs. For the time being, our research has
discovered that clonal expansion is governed by the
activation of canonical Wnt signaling promoted in 3D
Matrigel,107 while quiescence is controlled by the activation
of canonical BMP signaling promoted in HC-HA/PTX3.108

Because the HC-HA/PTX3 also exerts desirable anti-inflam-
matory and antiscarring actions, its capability of maintaining
quiescence of limbal epithelial SCs strongly suggests its
clinical usefulness in restoring the limbal niche as another
new strategy of restoring limbal SC population in the
treatment of LSCD. Further studies are also necessary to
characterize how extracellular HC-HA/PTX3 might exert
these actions regarding the receptor binding and the elicited
signaling pathways. These studies may also unravel a new
engineering strategy of a surgical graft containing limbal
epithelial SCs for correcting LSCD but also directly modulat-
ing in vivo limbal niche under the threat of nonresolving
inflammation. Consequently, we envision that the HC-HA/
PTX3 complex as a novel matrix can be formulated as a
platform technology to launch much other therapeutics to
aid regenerative medicine in the future.
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